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Refining prognostic assessment i

of diffuse large B-cell ymphoma: insights
from multi-omics and single-cell analysis
unveil SRM as a key target for regulating
immunotherapy

Xiaojie Liang'", Jia Guo'", Baiwei Luo®’, Weixiang Lu', Qiumin Chen?, Yeling Deng?, Yunong Yang® and
Liang Wang'"

ERESEE | Abstract
work. Purposes: Previous studies have demonstrated that proliferation, stroma or immunity
strongly influence the prognosis and therapeutic resistance of diffuse large B-cell lym-
phoma (DLBCL). Herein, we aimed to integrate proliferation, stromal, and immune (PSI)
features to systematically evaluate the risk stratification and explore novel therapeutic
targets in DLBCL.

Methods: Using data from multiple researches, we comprehensively evaluated
the characteristics and prognostic impact of PSI features in DLBCL, and developed
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a novel risk stratification model (PSI score) with a consistent cutoff value to stratify
the risk of 3,229 DLBCL patients from different cohorts. Mechanisms underlying
adverse prognosis in the high-risk DLBCLs were investigated through transcriptomic

University, Zhanjiang 524000, (n=3,229), genomic (n=576), and scRNA-seq (n=20) analyses.

China Results: We identified a high-risk DLBCL subgroup (HPSI, 36.1% of DLBCL). HPSI

was characterized by upregulation of spermidine synthase (SRM) and cold tumor
microenvironment (TME). Compared to low-risk group, HPSI exhibited poorer prog-
nosis, with lower 3-year OS (51.7% vs. 78.1%, P <0.0001) and PFS (48.9% vs. 72.6%,

P <0.0001) rates. HPSI shared malignant proliferative phenotype resembling Burkitt
lymphoma. Genomic analysis revealed extensive copy-number loss in the chemokine
and interleukin coding regions within HPSI. Bulk and scRNA-seq analyses indicated
that upregulation of SRM might mediate cold TME in DLBCL, potentially through sup-
pressing immune activation pathways, promoting dendritic cells (DCs) transformation
into tolerogenic DCs, and facilitating M2 polarization of macrophages. Finally, for even-
tual clinical translation, we integrated the model with other clinical features to develop
a comprehensive database for DLBCL.

Conclusion: Our study effectively simplifies risk stratification of DLBCL, reveal-
ing that immune microenvironment and SRM jointly shape a subgroup of DLBCL

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

@ Springer Open


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-025-01067-z&domain=pdf

Liang et al. Journal of Big Data (2025) 12:10 Page 2 of 25

with extremely poor prognosis. Targeting SRM may become a potential strategy
for modulating immunotherapy in DLBCL, providing new insight for immunotherapy.

Keywords: DLBCL, Proliferation, Stromal, Immune, Risk stratification, SRM, TME,
Immunotherapy

Introduction

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous and aggressive form of lym-
phoma with a high mortality rate [1]. Despite advances in treatment modalities, approxi-
mately 40% of patients still demonstrate resistance to standard treatment and experience
refractory or relapsed disease [2]. This necessitates clinical researchers to explore novel
prognostic biomarkers and therapeutic targets.

Previous studies have emphasized that in addition to tumor cells, the immune and
stromal component within the tumor microenvironment (TME) plays a vital role in the
biological behavior and treatment resistance of DLBCL [3, 4]. The TME within DLBCL
is a complex ecosystem consisting of various cell types, including tumor cells, immune
cells, stromal cells, and extracellular matrix (ECM) components [4, 5]. Moreover, not
only do the interactions between tumor and stromal cells play a pivotal role in DLBCL
progression, but the abundance of stromal cells also leads to an increased production of
various growth factors, activation of fibroblasts, and secretion of ECM proteins. These
factors, in turn, promote treatment resistance, invasion, and proliferation in DLBCL [6,
7]. Additionally, elevated expression of c-Myc, along with several other genes involved in
proliferation, has been linked to a poorer prognosis in DLBCL [8].

In support of these exciting scientific discoveries, comprehensive transcriptomic
analyses conducted by multiple research groups have unveiled distinct molecular
characteristics that shed light on the involvement of TME in DLBCL. For example, G.
Lenz et al. revealed a close association between stromal signature and the prognosis of
patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and pred-
nisone (R-CHOP/CHOP) in DLBCL [9]; Nikita and colleagues identified four distinct
lymphoma microenvironments (LMEs) that are associated with overall survival (OS)
in DLBCL [10]; Chloe” B and colleagues revealed that context-specific cell states and
ecosystems are associated with therapeutic responsiveness and resistance in DLBCL
[4]. However, the application of these findings in clinical practice has encountered two
primary obstacles. Firstly, despite the advancement in comprehending the unique TME
within DLBCL through these endeavors, there is still a lack of consensus concerning the
terminology and gene panel selection. Secondly, the utilization of gene expression-based
signatures to identify distinct molecular characteristics within DLBCL necessitates the
analysis of numerous genes using sophisticated bioinformatics methods, presenting a
challenge for their routine integration into clinical settings. Nonetheless, considering
the growing recognition of the tumor stroma and immune components in DLBCL, we
hypothesize that the integration of the proliferation, stromal, and immune biomarkers
would facilitate a more robust risk stratification, enabling clinicians to tailor personal-
ized treatment regimens and improve therapeutic outcomes for individuals diagnosed
with DLBCL.

In this study, we conducted a comprehensive investigation aimed at discovering and
validating biomarkers for robust prognostication in DLBCL patients by considering
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various components of the TME. Our research unveiled a novel 17-gene signature,
referred to as the proliferation, stromal, and immune-related (PSI) signature, which
demonstrated remarkable robustness in risk stratification for DLBCL. This unique gene
signature enabled the identification of two distinct subgroups characterized by diverse
clinical molecular features, transcriptional expression patterns, TME composition, and
genomic alterations. The PSI gene signature provides an appealing platform for accu-
rately stratifying the risk of DLBCL patients, thereby holding significant implications for
the clinical management of this aggressive malignancy.

Methods

Data sources

The workflow of the study is illustrated in Figure S1. We systematically collected a total
of 3229 DLBCL samples from multiple studies [9, 11-15]. Public multi-omics data can
be accessed from the Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov) data-
base and the Gene Expression Omnibus (GEO: https://www.ncbi.nlm.nih.gov/geo/)
database. Detailed data processing and analysis methods are described in supplementary

methods.

Assessment of the enrichment levels of stromal activities, cellular proliferation,

and immune components in DLBCL

We collected 468 human genes involved in cellular proliferation, stroma and immune
components from previous researches (Table S1) [9, 16—18]. Gene set variation analysis
(GSVA) was utilized to determine the enrichment abundance of cellular proliferation,
stroma and immune components according to transcriptomics data [19]. Additionally,
we used the GSEA function in the R package “clusterProfiler” to conduct functional

enrichment analysis [20, 21].

Assessment of global differences of stromal activities, cellular proliferation, and immune
components

We utilized two different methods to assess the global differences in stromal activities,
cellular proliferation, and immune components between and within DLBCLs and nor-

mal samples [22]:

(1) The Euclidean distance,

n

RMSD =, | 3 (log, x; — (log, y:)*/n
i=1

where xi and yi are the expression of gene i over two messenger RNA (mRNA) expres-
sion profiles, and # is the number of genes assigned to proliferation, stromal, and

immune signatures.
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(2) The correlation-based distance,
deor = 1 — cor (log2 x,log, y)

where cor is Spearman’s rank correlation coefficient between log, expression values
of the PSI genes in the two mRNA expression profiles.

Differential rank conservation (DIRAC) analysis

DIRAC algorithm evaluates the differential expression variability in distinct phenotypes
using particular gene subsets from individual transcriptomes [23]. In this study, five PSI
gene sets were employed to calculate the rank conservation indices (RCls). According
to the level (low/high) of conservation of transcript ordering (RCI), the gene set was
defined as being loosely or tightly regulated.

Feature engineering for selecting PSI signature and model development and validation

To develop a risk stratification model that integrates tumor proliferation, stromal, and
immune features, captures the heterogeneity of the TME, and reflects both intrinsic and
extrinsic factors influencing DLBCL development, progression, and prognosis, we con-
ducted a rigorous feature selection using machine learning algorithms. A total of 702
patients treated with R-CHOP from the GSE10846 (n=232) and GSE31312 (n=470)
cohorts were combined to form the training set. The PCA plots and density plots show
that, after correction of batch effects, the combined expression matrix achieves a greater
degree of transcriptional homogeneity (Figures S2A and S2B). We firstly employed the
least Absolute Shrinkage and Selection Operator (LASSO) to select PSI genes in the
training cohort. For the LASSO selection of the 468 PSI genes, we subsampled 70 per-
cent of the training cohort without replacement 1000 iterations and selected the markers
with repeat occurrence frequency more than 500. The tuning parameters were deter-
mined using tenfold cross-validation, along with Akaike and Bayesian information cri-
teria (AIC/BIC), and the lambda value within one standard error of the minimum. This
process identified 22 genes from the initial 468 features. Subsequently, we incorporated
these selected genes into a penalized stepwise Cox regression model (both forward and
backward feature selection) in the training cohort, which further narrowed the selection
to 17 genes that defined the final risk model (Figure S1).

Evaluate differences in transcription patterns among high- and low-PSl score DLBCL and BL
In order to investigate the potential mechanisms underlying high PSI score (HPSI)
versus low PSI score (LPSI) DLBCL, we conducted GSVA on 23 gene sets associated
with B-cell disorders from the normal and pathological lymphoid biology database [24]
(Table S2). In addition, we obtained 29 functional gene expression signatures (Fges) that
encompass key functional elements and immune, stromal, and other cell populations
within tumors [25] (Table S3), as well as 28 gene sets of tumor-infiltrating immune cells

representing adaptive and innate immunity [26] (Table S4) for additional investigation.
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Characteristic genomic alterations of PSI-model-based subgroups in DLBCL

To assess the mutation frequency of genes associated with HPSI and LPSI DLBCL, we
examined alterations in the cancer hallmark signaling pathways in each group. We uti-
lized Fisher’s exact test to compare the fraction of samples with at least one alteration in
each pathway between the two groups. Copy number variation (CNV) data was anno-
tated using Bedtools (v2.25.0) and GISTIC2.0 (v2.0.23), and we also performed a Fisher’s
exact test to compare somatic copy number alteration (CNAs) between the two groups.

Evaluation of immunotherapy response

We utilized two independent cohorts to evaluate the performance of the PSI model in
immunotherapy. The first cohort (GSE78220) [27] consisted of patients with metastatic
melanoma who were treated with pembrolizumab, an anti-programmed death-1 (PD-1)
antibody. The second cohort (IMvigor210) [28] included patients with advanced urothe-
lial cancer who received atezolizumab, an anti-PD-L1 antibody.

Statistical analysis

Spearman’s correlation was used for correlation analysis. For comparison between two
groups, either Student’s t-test or Mann—Whitney test was applied. Differences among
three or more groups were compared using either one-way analysis of variance or
Kruskal-Wallis test [29]. The significance of differences in OS and progression-free sur-
vival (PFS) was determined by KM survival analysis and log-rank test. All reported P
values were two-sided. Data processing was performed using R or Python software.

Results

Transcriptomic landscape uncovered dysregulation of stromal functionality, cellular
proliferation, and immune components in DLBCL

In order to investigate the PSI characteristics of DLBCL, we obtained 468 PSI genes
from previous studies (Table S1). Principal component analysis (PCA) showed clear
differences in the PSI gene expression patterns between DLBCL and normal samples
(Fig. 1A). The Euclidean distance (Fig. 1B) and correlation-based distance (Figure S3A)
revealed that the expression distance of PSI genes between DLBCL and normal sam-
ples, as well as within DLBCL samples, was significantly larger than that within normal
samples. Through differential expression analysis, we found heterogeneous expression in
most of the proliferation, stromal, and immune genes between DLBCL and normal sam-
ples (Fig. 1C). In terms of gene set enrichment analysis (GSEA), we observed significant
dysregulation [normalized enrichment score (NES) > 1.5 and adjusted p-value <0.001] of
PSI-related signalling pathways, including E2F targets, G2M checkpoint, MYC targets
and Epithelial-mesenchymal transition in DLBCL samples relative to normal samples
(Fig. 1D). Furthermore, we conducted differential rank conservation analysis to assess
the conservation differences in PSI signatures (Fig. 1E). In comparison with normal sam-
ples, DLBCL showed significantly lower RCIs in PIS signatures, which implied that PSI
signatures had higher heterogeneity and higher degree of dysregulation in the DLBCL.
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Fig. 1 Dysregulation of stromal functionality, cellular proliferation, and immune components in DLBCL. A
Left: principal component analysis of normal and DLBCL peripheral blood samples in the GSE83632 cohort

for the expression of PSI genes. Right: In the GSE32018 cohort,

principal component analysis of normal tissues

(lymph nodes and reactive tonsils) and DLBCL samples for the expression of PSI genes. B Global differences

in PSI gene expression between DLBCL samples and normal tissues (lymph nodes and reactive tonsils).

The Euclidean expression distances were estimated between DLBCL and normal samples (cyan), different
DLBCL samples (orange), and different normal samples (blue). The legends summarize the average distances
between different samples as a percentage of the average distance between DLBCL and normal samples.
*P<0.05**P <0.01;***P <0.001; ****P <0.0001. C The volcano plot shows the results of differential expression
analysis for PSl-associated genes between DLBCL samples and normal tissues (lymph nodes and reactive
tonsils). The y-axis represents the log2 fold change, and the x-axis represents the —log10 adjusted P-value. D
GSEA results showed significant upregulation of PSl-associated signaling pathways, such as E2F targets, G2M
checkpoint, MYC targets, and Epithelial-mesenchymal transition in DLBCL compared to normal tissues (lymph
nodes and reactive tonsils). E Comparison of the rank conservation index (RCl) of PSI signatures between
DLBCL samples and normal tissues in the GSE32018 cohort. An RCl of 1.0 indicated that the ranks of signature
genes were almost unchanged among samples, while an RCl of 0.5 indicated that the ranks of signature
genes were greatly varied among samples of the same phenotype. FDR < 0.05 represents significantly

dysregulated signatures between DLBCL and normal samples
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Taken together, these data indicate that DLBCL exhibits significant PSI heterogene-
ity and dysregulation. And in view of such sharp heterogeneity and dysregulation, our
hypothesis was that a gene expression signature associated with stromal functionality,
cellular proliferation, and immune cells could serve as a compelling framework for iden-
tifying and selecting DLBCL patients with an unfavorable prognosis.

Identification of a 17-gene risk stratification signature for DLBCL

To further validate our hypothesis and develop a concise and robust gene panel for clini-
cal applications, we performed the LASSO and stepwise Cox regression to analyse the
468 PSI genes in the training set. First, using the LASSO algorithm, we identified 22 PSI
genes that appeared more than 500 times in 1000 repeated iterations. Next, we inte-
grated these selected genes into a penalized stepwise Cox regression model to further
narrow down to 17 and built the PSI score based on the following formula (where h(t) is
the baseline risk function):

PSI score = ho(t) x exp (0.70517 x SRM + 0.16336 x FABP4 — 0.16527
x LYZ — 0.80187 x VNN3 — 0.22452 x NAV2 — 0.14652
x FNDC1 + 0.50846 x DDX4 — 0.16316 x CD79A
—0.0952 x FCRL3 + 0.36025 x CD68 + 0.53115 x PADI4
— 0.23496 x GSN + 0.24376 x GABARAPL1 — 0.27031
X PTTG1IP — 0.35819 x CTLA4 — 0.19987
X PDLIM3 + 0.20235 x SRPX)

In each cohort, DLBCL patients were categorized into low-PSI score group (LPSI)
and high-PSI score group (HPSI) using the cutoff value 1.289567 determined by the
surv_cutpoint function of the Survminer R package in the training cohort. Compared
to LPSI-DLBCL, HPSI-DLBCL showed a worse prognosis with significantly lower
3-year OS rates (51.7% vs. 78.1%) and PFS rates (48.9% vs. 72.6%), as well as signifi-
cantly reduced 5-year OS rates (42.7% vs. 72.5%) and PFS rates (45.7% vs. 69.1%) (Fig. 2A
and B). Remarkably, the 17-gene model allowed for reliable stratification of DLBCL
patient prognosis across multiple research centers utilizing a consistent cut-off point.
This approach ensures the dependable assessment of OS and PFS in DLBCL (Fig. 2C-J;
S3B-S3D). Additionally, univariate and multivariate Cox proportional hazard regression
analyses demonstrated that our 17-gene model was an independent predictor of both
favorable and unfavorable OS and PFS in DLBCL, even after adjusting for clinical covar-
iates such as the International Prognostic Index (IPI) and cell-of-origin (COO) subtype
(Figures S4 and S5).

PSl-based subgroups exhibit distinct clinicopathological features

We proceeded to examine the overlap between established clinicopathological fea-
tures and PSI subgroups. HPSI-DLBCL had a higher prevalence of activated B-cell-
like (ABC), unclassified (UNC), MCD, or molecular high-grade (MHG) subtypes, PFS
events, and advanced stage, with a more frequent medium—-high IPI. In comparison,
LPSI-DLBCL had a higher proportion of germinal center B-cell-like (GCB), BN2 or
EZB subtypes, low IPI score, early stage, and non-PFS events (Fig. 3A and B; S6A
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Fig. 3 Clinicopathological features in LPSI and HPSI DLBCLs. A Left: The association of 17-gene-based
subgroups (outer rings) with established clinical and molecular subtypes (inner ring), such as COO
classification, REMoDL-B trial subtypes, IPI groups, and tumor stage. Right: Bar charts illustrating the
prevalence of COO subtypes, REMoDL-B trial subtypes, IPI groups, and tumor stage within 17-gene-based
subgroups. REMoDL-B refers to the randomized evaluation of molecular-guided therapy for diffuse large
B-cell lymphoma with bortezomib clinical trial. B The relative proportions of HPSI- and LPSI-DLBCL in various
genetic subtypes, such as MCD, BN2, N1, and EZB. C Distribution of therapy response rates among patients
categorized into HPSI and LPSI groups in the GSE31312 cohort (two-tailed Fisher exact test; P=1.8e-06). CR,
complete response; PR, partial response; SD, stable disease; PD, progressive disease. D Survival plots for OS
demonstrate the 17-gene model stratification for individual responses to R-CHOP among patients in the
complete response (CR) group (left) and non-complete response (PR/SD/PD) group (right). E The OS and

PFS KM curves were constructed for DLBCL patients with MYC rearrangement, stratified into HPSI and LPSI
groups. MYC rearrangements were detected using fluorescent in situ hybridization (FISH). F The OS and PFS
KM curves were generated for DLBCL patients with double-expressors, assessed by RNA-seq, characterized by
high expression of both MYC and BCL2 at the mRNA level. Patients were stratified into HPSI and LPSI groups.
G-I The OS and PFS KM curves were plotted for DLBCL patients with GCB, ABC or MHG subtypes in the
GSE117556 cohort, categorized into HPSI and LPSI groups. For KM curves, the p-values were calculated using
the log-rank test

and S6B). HPSI-DLBCL demonstrated a higher likelihood of experiencing progressive
disease (PD) following treatment with R-CHOP or RB (Bortezomib)-CHOP. This find-
ing indicates that our 17-gene model holds the potential to predict the therapeutic
response in DLBCL (Fig. 3C and S6C). Notably, PSI subgroups were strongly asso-
ciated with the outcome of DLBCL patients, irrespective of their therapy response

(Fig. 3D and S6D-S6F). For instance, we noted a persistent pattern of mortality in
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patients who achieved complete remission (CR), suggesting that CR may not always
signify a complete cure (Fig. 3D and S6D-S6F). Our 17-gene model can identify indi-
viduals within the CR group who are at risk of early mortality. Remarkably, patients
with high-risk factors such as MYC rearrangement, double-expressors and MHG sub-
type do not necessarily predict unfavorable outcomes in all cases. Of these patients,
there were still some who have a favorable prognosis that can be identified by the
17-gene model (Fig. 3E-G). However, when we specifically analyzed survival out-
comes in double-hit or triple-hit DLBCL (DHL/THL) patients, our 17-gene model did
not achieve significant stratification (Figures S6G and S6H). While the OS curves for
the HPSI and LPSI groups of DHL/THL patients showed a separation trend, this dif-
ference did not reach statistical significance. Notably, the 17-gene model effectively
distinguishes the prognosis of DLBCL patients within ABC, GCB, or UNC subtypes,
demonstrating its robustness and broad applicability in diverse biological contexts,
reinforcing its potential clinical utility for DLBCL prognostic assessment (Fig. 3H, I,
and S7A-S7F).

PSl-based subgroups show different transcriptional patterns

Given the critical role of transcriptional patterns in shaping the clinical and molecular
characteristics of DLBCL [9, 10, 30, 31], we hypothesize that variations in transcrip-
tional patterns contribute to the high-risk biological features and clinical prognosis of
HPSI-DLBCL. To investigate our hypothesis, we systematically compared HPSI- and
LPSI-DLBCLs with Burkitt lymphoma (BL) using the 23 gene signatures related to B-cell
diseases. Transcriptome expression patterns revealed that HPSI-DLBCL and BL shared
high expression of genes involved in cell cycle, proliferation, ribosomal proteins and
MYC overexpression, indicating a common proliferative phenotype (Fig. 4A and S8A).
Notable signatures that exhibited decreased expression in HPSI-DLBCL were associated
with T/NK and dendritic cells, plasma cells, stromal, monocytes and inflammation, sug-
gesting a potential cold TME phenotype in HPSI-DLBCL (Fig. 4A and S8A). Further-
more, we corroborated our hypothesis by analyzing the 29 functional gene expression
signatures (Fges) from Bagaev’s study [25], HPSI-DLBCL exhibited features consistent
with an immune-depleted phenotype, characterized by the downregulation of fibrosis,
the absence of most anti-tumor and pro-tumor immune infiltrating cells, and an upreg-
ulated malignant cell proliferation rate (Fig. 4B—E and S8B-S8E). Notably, there is an
upregulation of tumor-associated macrophages, neutrophil signature, and Th2 signature

(See figure on next page.)

Fig. 4 Distinct transcriptional patterns are observed in 17-gene-based subgroups. A The heatmap illustrates
the enrichment scores (blue =low, red = high) of selected signatures in LPSI and HPSI DLBCL subgroups of
the GSE117556 cohort, while also comparing gene expression patterns in 70 patients with BL. Fb, fibroblast;
NF-kB, nuclear factor kappa-lightchain-enhancer of activated B cell; NK, natural killer cell. B-E Differences of
angiogenesis and fibrosis (B), anti-tumor immune infiltrate (C), tumor proliferation rate (D) and pro-tumor
immune infiltrate (E) among HPSI and LPSI DLBCL samples of the GSE117556 cohort. F Abundance of
TME-infiltrating innate and adaptive immune cells among HPSI and LPSI DLBCL samples of the GSE117556
cohort. G Differences of immune score and stromal score between HPSI and LPSI DLBCL of the training
cohort. H Correlation between immune score and PSI score in the training cohort. For boxplots, the lines

in the boxes represent median values and the lower and upper ends of the box represent the interquartile
range of values. *P <0.05; **P <0.01; ***P <0.001; ****P <0.0001
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in HPSI-DLBCL, which may partly explain the formation of its cold immune microenvi-

ronment (Fig. 4E and S8E). And there is a decrease in the infiltration of most innate and

adaptive immune cells, as well as immune and stromal scores in HPSI-DLBCL (Fig. 4F,
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G and S8F). Negative correlations were observed between PSI score and immune score

(Fig. 4H).

PSl-based subgroups demonstrate different featured genomic alterations
Genomic alterations, including MYC amplification and mutations in WNT or KRAS

signaling pathways, could drive immune microenvironment reprogramming in tumors
[32-35]. We hypothesized that the genotypes could shape the immunophenotype of
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DLBCL. To test this, we further investigated the somatic mutations and CNAs between
HPSI- and LPSI-DLBCLs (Fig. 5A and B). HPSI-DLBCL showed increased mutations
in TP53, MYD88, PIM1, DTX1, CD79B, BTG1, MYC, PRDM1 and DDX3X. LPSI-
DLBCL had mutations in CREBBP, P2RY8, CARD11, NFKBIA, STAT3, and PIK3CD,
which were infrequent in HPSI-DLBCL. HPSI-DLBCL shared genomic mutations with
BL [36, 37], including KMT2D, MYC, DDX3X, and CCND3, which might account for
their shared proliferative phenotype. We further investigated the genomic alterations in
cancer hallmark signaling pathways between the two groups. PI3K-AKT-MTOR path-
way predominantly mutated in HPSI-DLBCL (P <0.01) and the abnormal activation of
this pathway can lead to enhanced cell proliferation and anti-apoptosis [38]. And HPSI-
DLBCL exhibited higher frequency of mutations in MYC, WNT-BETA, and DNA repair
pathways, although statistical significance was not observed (Fig. 5C). Consistently, we
observed a similar pattern of genomic alterations in the cohort from Chapuy et al. [39],
further corroborating our findings (Figures S9A and S9B).

As for somatic CNA differences, HPSI-DLBCL showed more frequent of amplifica-
tion or gain of specific chromosomal regions, including 11q13.1 and 19q13.1-19q13.2
(Fig. 5D). On these chromosome regions, there were several cancer-related genes,
including SF1, ERF, PSENEN, AKT2, and NUMBL. The deletion or loss of chromosomal
regions 5q31.1-5q31.3, 9q21.11-9q22.33, 17p13.1-17p13.3, 20q13.12-20q13.33, and
22q11.1-22q13.32 was also more frequent in HPSI-DLBCL (Fig. 5D). On these chromo-
some regions, there were a significant number of genes related to antimicrobials, anti-
gen processing and presentation, interleukins and interleukin receptors, cytokines and
cytokine receptors, such as IL3, CSF2, BRD8, NRG2, HBEGF, CD14, GLP2R, RABEP]I,
TNEFRSF6B, IL17RA, NFATC2 and BID, as well as cancer-related genes including
NTRK2, STK4 and TLE4. Recent researches have confirmed that the loss of interleukin
and cytokine pathway genes serves as a mechanism to suppress antitumor immunity and
confer resistance to immunotherapy [40].

Conclusively, our analysis revealed that alterations in specific chromosomal regions
might influence the TME reprogramming and heterogeneity of DLBCL, and HPSI-
DLBCL could exhibit resistance to immune checkpoint therapy.

Upregulation of spermidine synthase (SRM) mediates the cold TME of HPSI-DLBCL

As the PSI subgroups were established based on the 17 genes, to further elucidate the
mechanisms underlying HPSI-DLBCL and identify potential therapeutic targets, we
compared the expression of these genes between the subgroups (Fig. 6A). SRM was
overexpressed in HPSI-DLBCL and negatively correlated with the majority of immune
cells (Fig. 6B). The upregulation of SRM in DLBCL is accompanied with a decrease
in most innate and adaptive immune cells as well as immune scores (Figures S10A
and S10B). Notably, DLBCL patients with SRM overexpression had reduced OS rates
(Fig. 6C). Therefore, we focused on SRM. SRM overexpression in DLBCL can result in
the suppression of interferon and inflammatory response pathways (Fig. 6D). In con-
trast, MYC targets, oxidative phosphorylation, glycolysis, and cell cycle-related path-
ways were upregulated in DLBCL patients with SRM overexpression (Figure S10C), and
a positive correlation between the expression of SRM and these pathways was observed
(Figure S10D-S10J). Meanwhile, SRM overexpression in DLBCL was linked to weaker
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Fig. 6 The immune-deserted phenotype of HPSI-DLBCL is associated with the upregulation of SRM. A
Expression of the 17 genes that constructed the PSI-based model between HPSI and LPSI. B Correlation
between the 17 genes and each TME-infiltrating innate and adaptive immune cell type. Blue represents

a negative correlation and red represents a positive correlation (*P <0.05; **P <0.01). C Survival analysis

using KM method in the training cohorts, based on low and high expression of SRM, indicates that DLBCL
patients with overexpressed SRM have a poor prognosis. The p-values were calculated using the log rank
test. D GSEA reveals significant downregulation of inflammatory and interferon response pathways in
high-SRM expressing DLBCL compared to low-SRM expressing DLBCL. NES, normalized enrichment score.

E The expression of the innate immunity-sensing factor, NLRP3 inflammasome, is compared between SRM
high- and low-expressing DLBCL. F Correlation analysis is performed to evaluate the relationship between
SRM expression level and chemokine genes in DLBCL. G Differences in immune-activated pathways, which
include antigen processing and presentation, NOD-like receptor, T cell receptor, and Toll-like receptor
signaling pathways, are observed between DLBCL cases with high and low SRM expression. H, | Mean mRNA
expression levels of immune co-inhibitors and co-stimulators (H), as well as MHC molecules (1), are compared
between DLBCL cases with high and low SRM expression. *P < 0.05; **P < 0.01; ***P <0.001; ****P <0.0001
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immunity activation based on comparison of innate immunity-sensing factor NLRP3
inflammasome (Fig. 6E). In addition, SRM expression was strongly anti-correlated with
most chemokine genes in DLBCL (Fig. 6F), which is consistent with the downregula-
tion of immunoactivation pathways in SRM-high expression DLBCL patients (Fig. 6G).
Notably, in DLBCL cases with low SRM expression, there is an enhancement of immune
activation pathways, accompanied by an increase in the expression of immune check-
points, co-stimulatory molecules and MHC molecules (Fig. 6G-I).

Overall, our analysis suggests that SRM overexpression mediates the cold TME pheno-
type in DLBCL by promoting immune evasion and attenuating innate immune sensing.

Single-cell analysis revealed that SRM facilitates proliferation and immunosuppression

of DLBCL tumor cells

Mechanisms of immune escape involve tumor-intrinsic and -extrinsic factors. Does
SRM impact tumor cells or immune cells to contribute to immune evasion in DLBCL?
We analyzed 20 single-cell RNA-sequencing (scRNA-seq) samples to decipher this
question [3, 4]. Detailed data processing and analysis methods of scRNA-seq sam-
ples are described in supplementary methods. SRM expression was highest in B cells
(Fig. 7A). SRM expression in DLBCL tumor cells was higher than in normal cells, while
the opposite trend was observed in follicular lymphoma (FL) and transformed FL (tFL)
cells (Fig. 7A). We further observed a gradual increase in SRM expression in FL, tFL,
and DLBCL tumor cells (Fig. 7B). Subsequently, DLBCL tumor cells were stratified into
SRM-high and SRM-low subclusters based on their SRM expression. In consistent with
bulk cohort, most cancer hallmark signaling pathways were upregulated in SRM-high
tumor cells, whereas interferon and inflammatory response pathways were upregulated
in SRM-low tumor cells (Fig. 7C). Notably, SRM-high tumor cells exhibited greater total
read counts in comparison to SRM-low tumor cells, indicating enhanced transcriptional
activity (Fig. 7D). The pathways associated with glycolysis and cell cycle demonstrated
enrichment, providing additional evidence for the heightened demand for transcrip-
tion (Fig. 7C and E). These findings indicate that SRM overexpression might promote

(See figure on next page.)

Fig. 7 Influences of SRM upregulation on DLBCL tumor cells. A Comparison of SRM expression in different
cell types across 20 scRNA-seq samples and between tumor (malignant) and normal (non-malignant)

B cells in various B cell ymphomas. Mac, macrophage cell; Mono, monocyte cell; DC, dendritic cell. B
Comparison of SRM expression in tumor cells (malignant B cells) among DLBCL, FL and tFL. C Heatmap show
GSEA normalized enrichment scores (NES) (blue=low to red =high) of cancer hallmark signatures in SRM
high- versus low-expressing tumor cells of DLBCL. D Boxplots showing the increased transcript count in

SRM high-expressing tumor cells of DLBCL. E Heatmap shows GSEA NES of the cell cycle, chemokines, and
stem-cell associated pathways in SRM high- and low-expressing tumor cells of DLBCL. F Heatmap displays
the average expression of genes involved in immune activation and immune cell chemotaxis pathways
between SRM high- and low-expressing tumor cells. G Heatmap of the area under the curve (AUC) scores
(green=low to red =high) of expression regulation by transcription factors, as estimated using SCENIC.
Shown are the transcription factors having the higher difference in expression regulation estimates between
SRM high—and low-expressing tumor cells of DLBCL. H tSNE analysis for SRM high- and low-expressing
tumor cells, for the expression of MYC, SMARCA4, NFATC1, TCF3, FOS, JUN, JUNB and HDAC2, and for the AUC
of the estimated regulon activity of these transcription factors, corresponding to the degree of expression
regulation of their target genes. I Violin plots showing the GSVA enrichment scores of stemness signatures

in SRM high- versus low-expressing tumor cells of DLBCL. J Survival analysis demonstrated that SRM high
-expressing tumor cells were associated with poor prognosis of DLBCL



Liang et al. Journal of Big Data

(2025) 12:10

Page 16 of 25

A SRMin DLBCL SRM in FL SRM in tFL SRM
5 3 s 3 3 3 2. 5 3
g g k] 32 g
52 52 5 5, 52
¢ § § g §
s s s 1. 13
&1 y 81 & ! & &1
M-dMnnolDC I0_ ormal I puscL
ormal
0 < o Normat ] umor 3 e o FL
Bcell MacMonaC NK cell T cell Normal  Tumor Normal ~ Tumor Normal  Tumor DLBCL  tFL FL
c R ¢
I HALLMARK_UV_RESPONSE_UP b - SOXS5(20 genes)
ﬁl[ ARK PS(S PATHWAY [ELK3(289 genes)
FOS(41 genes)
{ALL
AL .. POU2F2(35 genes)
Al £ 40000 H JUN(0 genes)
ALL 3 . [y USF1(22 genes)
ﬁt o Q BCL6(6 genes)
AL B 5 TFAP2E(7 genes)
1AL 5 > HNF1B(19 genes)
ALL 2 2
= iALL 5 Q. JUNB(41 genes)
Al & 20000 1 SMARCA(949 genes)
ALL 9 MYC(934 genes)  z.sore
IALL <3 NHLH1(14 genes)
A s il B
LA ARK TGFE BETA SIGNALING - NFATON(Z3 gones) oy **
IALLMARKWNT_BETA CATENIN_SIGNALING 0 CEBPZ(163 genes) [ o4
A e i o
AL CAPICAL_JUNCTION SRM-high  SRM-low POLR3G(309 genes)
ALLMARK_) ENESIS E PUM3(3 genes)
IALLMARK_EPITHELIAL MESENCHYMAL_TRANSITION
ALLUARICNOTCH SIGRALING HDAC2(1318 genes)
ALLARK CORGUTATI SRM-high SRM-low
(ALLMARK API
A .- MAPK SIGNALING PATHWAY
IALLMARK_OXIDATIVE_F PHOSPHORVLATION
IALLMARK_G2M_CHEGKPOINT
AL CMARK VG, TARGETS V1 Signaling pathways regulating pluripotency of stem cells
IALLMARK MITGTIC SPINDLE
Al ARK MTORT:%HQIE;NAUNG NE?
HALLMARK_PANCREAS BETA_CELLS Chemokines 0 "
HALL w_xms,swsm ING_DN 5 Slgnature o_sl
HALLMARK_ANGIOGENESIS 0 Cytokin 04
HALLMARK_TNFA_SIGNALING_VIA NFK8 e ahibitor
HALLMARK_IL2_STATS_SIGNALING NES CELL CYCLE -5 02
HALLMARK INTERFERON_GAMMA_RESPONSE ] 0 chemokin o
HALLMARK_KRAS_SIGNALING_UP W immunostimulator
HALEAARK IFLAGHIATORY e cponse 5 o o e
HALLMARK INTERFERON ALPHA RESPONSE 0, ] MHC or
HALLMARK_IL6 . JAK snn SIGNALING -5 Pl Pt
HALLMARK_ALLOGRAFT_REJECTION -0 < <
SRM SRM = g
high Tow =3 2
H Expression of Expression of
. i i 949 SMARCAM targets
SRM-high SRM-low MYC expression sf MYC targets SMARCA4 expression ! g
;h
®
2
= *»
2 oNe_1
t
- . ressmn of . Expression of Expression of
NFATC1 expression 23 NFATCT targets TCF3 expression TgFG targets 41 FOS targets

Expression of
Expression of 1318 HDAC? targets

Expression of
41 JUNB targets

40 JUN targets HDAC?2 expression

JUNB

| J
07
Ben-Porath_ES-ExprSet2,
2 SRM"™" Tumor cell features +SRM-high—+-SRM-low & SRM"" Tumor cell features ~+SRM-high-+SRM-low
Ben-Porath_ES-TFs, 08 S £ 10
Kim_et_al_Core| 08 E S
o 07 @or
g3 8
Kim_et_al_Myc| 1 g = <
? 505 § 05
3 9 S
w @ I3
Kim_et_al_PRC| ,? 0455 8 2
2 o2 o2 _
05 5 8 p <0.0001 L p=0.018
Mizuno_et_al_118 - 2 a a
055 % 0.0 0.0
Mizuno_et_al_340 ‘ ‘ ] T % E] @ E] E] ) ) 7 3 ] T
Time in months Time in years
1.2 Number at group Number at group
Shats_et_al_CSR 2 s
E - 324 274 204 126 78 40 5 2 - 242 131 59 16 2 o
0.7 O =604 555 431 231 119 37 5 O =| 460 2905 147 48 10 1
Shats_et_al IPS o 10 20 30 40 50 60 0 2 4 6 8 10
Time in months Time in years
Wong_et_al ‘ 08

SRM-high SRM-low

Fig. 7 (Seelegend on previous page.)

the proliferation of tumor cells, underlining a potential vulnerability of tumor cells to
SRM inhibition in DLBCL. In contrast, chemokine pathway was downregulated in SRM-
high tumor cells (Fig. 7E). A more comprehensive analysis uncovered downregulation
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of genes associated with immune cell chemotaxis and immune activation in SRM-high
tumor cells (Fig. 7F). These data suggest that tumor cells with SRM upregulation are
remodeled, thereby downregulating their antigen presentation and immune cell chemot-
axis activities to facilitate immune tolerance.

Additionally, to explore the transcriptional regulatory mechanisms underlying the dif-
ferences between high- and low-SRM tumor cells, we performed single-cell regulatory
network inference and clustering (SCENIC) analysis. The downregulation of FOS/JUN/
JUNB and upregulation of TCF3, SMARCA4, NFATC1, HDAC2, NHLH1 and MYC
seemed responsible for tumor-specific SRM-high cell phenotypes (Fig. 7G and H). These
upregulated regulators have been reported to be associated with cell proliferation and
differentiation [41-45].

Of interest, genes implicated in immune activation showed FOS/JUN/JUNB binding
sites, implying that FOS/JUN/JUNB deletion underlies the reduced immune stimulatory
phenotype of SRM-high tumor cells. We detected elevated levels of stemness signatures
in SRM-high tumor cells (Fig. 7I) and found upregulated stem-cell-related pathways,
such as PI3K-AKT, TGF-beta, and signaling pathways regulating pluripotency of stem
cells (Fig. 7C and E), indicating a stem-cell-like characteristic was exhibited in SRM-high
tumor. Moreover, SRM-high tumor cells were linked to unfavorable outcomes in DLBCL
(Fig. 7).

Effects of SRM upregulation on immune cells within TME

Denderitic cells (DCs) play a crucial role in the activation and recruitment of T cells [46,
47]. Using the same method, we classified DCs into SRM-high and SRM-low express-
ing groups. The total read counts in SRM-high DCs were increased (Figure S11A). We
observed a significant reduction in the expression of co-stimulatory and MHC mole-
cules, as well as chemokines, in SRM-high DCs (Figures S11B and S11C). These results
suggest a diminished ability of SRM-high DCs to activate T cells and present antigens.
These findings align with the observations in Bulk cohort (Fig. 6H, I and S10A). Func-
tional enrichment analysis revealed that SRM-high DCs displayed upregulation of can-
cer hallmark pathways (Figure S11D). SRM-high DCs exhibited increased expression
of multiple metabolic pathways, including fatty acid metabolism, nucleotide metabo-
lism, the TCA cycle, glycolysis and oxidative phosphorylation (Figure S11E). Previous
research has demonstrated that the shift from glucose dependence to Fatty Acyl-CoA
Oxidase (FAAO) and the upregulation of various metabolic pathways contribute to the
immunosuppressive phenotype in DCs [48]. Moreover, heightened glycolysis activ-
ity promotes the maturation resistance and de-differentiation of immune-suppressive
tolerogenic DCs (tol-DCs) [48]. In SRM-high DCs, the expression of multiple markers
of tol-DCs, including CCR7, CD14, CD141 (THBD), and CD274 (PD-L1), were upregu-
lated (Figure S11B). Together, these findings indicate that SRM-high DCs demonstrate
an anti-inflammatory tol-DC phenotype.

We conducted re-clustering on macrophages and identified two distinct clusters: CO
and C1 (Fig. 8A). C1 exhibited significantly higher expression of SRM compared to CO
(Fig. 8B). Functional enrichment analysis revealed that CO displayed stronger activ-
ity of MHC protein binding and Toll-like receptor binding, while C1 showed enhanced
ribosome metabolism and rRNA binding activity (Fig. 8C). Moreover, C1 exhibited a



Liang et al. Journal of Big Data (2025) 12:10 Page 18 of 25

Features of co-stimulatory =~ -04 00 04

Cluster 10 ¢20 040 @60 F
A B SRM expression D Percent Expresseds 10 20 @40 @ Average Bxpresson
= c1
215 .
K Glycolysis
< Col + © @ o © o - © © © O o o
S 10
8 Cluste T ¥ ¥ L I @ 0 £ § & & =
Zos uCOr 5 &85 F g I E %2 3 g8 8 ES 7]
'ﬁ L A T 285 g °°E e <0001
= & L 2 g S o s e <001 | 5
= = o Average Expression Inflammatory 5
Features of co-inhibitory | Response 3
C Percent Expressed . 0 ¢ 10 20 25 _0400 04 2
immune receptor activity/ @ ° c1 . . ° ° . . m
oxidoreductase activity, acting on NADP)H| 3
MHC class | protein binding 18
peptide antigen binding, ~ © co Interferon Alpha 3
amide binding:  © ° i Response 3
pattern recognition receptor actiity | ® Ge";fa‘m [ S 3 ] 3 3 ES
19G binding]  * : 02 1] 9 g s} 2 = 1%
Toll-like receptor binding] e @03 F g z S L] e §
MHC protein binding, o T 13} ausoa e <0601 | ©
peptide binding| @ ° p.adjust Interferon Gamma
structural constituent of ribosome. ° 4e-04 Response
rRNA binding ° 3e-04 Features of MHC molecules £} (S N g
MHC class Il protein complex binding . 2e-04
ubiguiin-protein transferase regulator activty o | W Co vs. C1
MHC protein complex binding °
mRNA 5'-UTR binding ° coi ® ° o . [ ] ° ° L] G CCR7
cadherin binding °
58 rRNA binding Y P pay o I} o < =
MHC class Il receptor activity @ o & e T T | ] cDso
L. g & & 8 3 3 3
Afg) ((2;;6 . = * - 3 cD86
¢ ) Percent Expressed « 20 @ 40 @ 60 @ 80 Average Expression a <
-0.40004 )
E cxcL1o
Cluster (_‘;D-
N Cd163 mediating an anti inflammatory response *** <
y protein 1 gpha i FCGR1A [}
Positive regulation of inflammatory response *** FCGR2A 3
| Negative regulation of inflammatory response *** Qo
Regulation of inflammatory response *** !4 c'“g;e' FCoR2B £
Inflammatory response *** 1 3
Inflammatory response *** 2 FCGR3A g
[ | Nemeth inflammatory response Ips up *** 3
i Abnormal inflammatory response ** 0 rooRsE =1
1110 antiinflammatory signaling pathway *** D
Posiive reguiation o{c tokine production 2 <
involved ininflammatory response
‘ 8ystolo(§15% g;o&lugt‘lon IVohed ?nﬁammatory IL1R1 @
ﬁ:%uchon of molecular, mediator involved in I -4 —
infammatory response - g leishmani LR
pé‘r!a‘s’?ll?‘.’ﬁ‘ egﬁ%w;espo.nse favouring leisl .manla
Adora2b mediated anti inflammatory cytokines
roduction * . TLR2
ositive regulation of inflammatory response to
antigenic stimulus *
Inflammatory response to antigenic stimulus * ™
Regulation of inflammatory response to antigenic
stimulus * e oot
— | Negative regulation of neuroinflammatory response co ]
{8ukocyte migration involved in inflammatory Y =
fesponse * is i i CLEC4A 2
Leukocyte chemotaxis involved in inflammatory 3 x
response *** 20
Acute inflammatory response ** Q@
I Leukocyte activation involved in inflammatory CXCR4 S @
response ** ) o T 3
| Negative regulation of chronic inflammatory g:)' 3
ponse * 8
Overview of proinflammatory and profibrotic e}
mediators oLP! ry and pi MRC1 2=
Chronic inflammatory response *** =<
Regulation of chronic inflammatory response *** N
Transcription factors
H SATB1(14 genes) | 3 » Transcription factors Targets
BHLHE40(443 genes) ATF4 ATF4 Targets z
ETS1(213 genes) g — - g T =
SPIC(359 genes) BATF BATF Targets
ATF4(83 genes) A | -
2
LEF1(6 genes) CEBPD - CEBPD Tar
gets
TAF7(268 genes) g A T
H
EZH2(252 genes)
(2529 Z-score ETS1 ETS1 Targets
SPIB(630 genes) 0 = = g T ——
$
EGR3(27 genes) 2
(27 genes) 04 EZH2 EZH2 Targets
NFE2(30 genes) R - I
ATF6B(110 genes) 00 RF2 i 2
GTF2IRD1(6 genes) - wiiy IRF2Targets e
MLX(462 genes) . 04 8 H
MAFB(51 genes) MAFB ‘ P X MAFBTargets g
BATF(22 genes) 8 9
v
NR1H3(32 genes) SATB1 SATB1 Targets
—+ e ————
CEBPD(362 genes) g - 8
ZNF524(45 genes) SPIC SPIC Targets
IRF2(229 genes) o <o c1 0 co c1

co c1
Fig. 8 Overexpression of SRM induces an M2-like anti-inflammatory phenotype in macrophages. A
Reclustering of macrophages in single-cell samples of DLBCL. B Violin plot show the increased mRNA level of
SRMin C1 macrophages compared to CO macrophages. C GO enrichment analysis shows that CO exhibited
stronger immune activity, while C1 showed stronger ribosome metabolism and rRNA binding activity. D Dot
plot shows the expression of marker genes of co-stimulatory and MHC molecules, as well as co-inhibitory in
C0 and C1 macrophages. E Heatmap shows GSVA enrichment scores of immune response pathways in CO
and C1 macrophages. *P <0.05; **P <0.01; ***P <0.001; ****P <0.0001. F GSEA of glycolysis, inflammatory and
interferon response pathways in CO and C1 macrophages. NES, normalized enrichment score. Adjusted P
value represents false discovery rate (FDR). G Violin plots show the expression of marker genes of M1 and M2
macrophages in CO and C1 macrophages. H Heatmap of the area under the curve (AUC) scores (green=low
to red=high) of expression regulation by transcription factors, as estimated using SCENIC. Shown are the
transcription factors having the higher difference in expression regulation estimates between C0 and C1
macrophages of DLBCL. I Violin plots of CO and C1 macrophages, for the expression of SPIC, SATB1, MAFB,
IRF2, EZH2, ETS1, CEBPD, BATF and ATF4 (left), and for the AUC of the estimated regulon activity of these
transcription factors (right), corresponding to the degree of expression regulation of their target genes



Liang et al. Journal of Big Data (2025) 12:10

decrease in the expression of co-stimulatory molecules, MHC molecules, and immune
response pathways, along with an increase in co-inhibitory molecule expression (Fig. 8D
and E), indicating an anti-inflammatory phenotype. Conversely, CO exhibited a pro-
inflammatory phenotype and were significantly enriched in interferon and inflammatory
response pathways, as well as glycolysis (Fig. 8F). Previous studies have demonstrated
that macrophages with upregulated glycolysis exhibit enhanced phagocytic capacity and
an M1-like proinflammatory phenotype [49, 50]. Additionally, C1 displayed an M2-like
immunosuppressive phenotype, characterized by the significant downregulation of
M1 macrophage markers (CXCL10, TLR2, FCGR1A, FCGR2A, FCGR3A, and TLR4)
and upregulation of M2 macrophage markers (CLEC4A, CXCR4 and MRC1) (Fig. 8G).
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SCENIC analysis also showed that regulators such as SATB1, ETS1, ATF4 and EZH2
associated with cell differentiation and promoting cancer development and progres-
sion in C1 were enriched compared to CO, while regulators that suppress tumors such as
IRF2, BATF and CEBPD were significantly downregulated (Fig. 8H and I) [51-53].

Evaluation of immunotherapy response as well as nomogram development and validation

based on the 17-gene model

Based on the above findings, we speculate that the 17-gene model can assess the effi-
cacy of immunotherapy in tumor patients. Although we were unable to access pub-
licly available data of immunotherapy specifically for DLBCL, we validated the utility
of the 17-gene model for assessing immunotherapy response and prognosis in cohorts
treated with different immune checkpoint inhibitors for two solid tumors. Low PSI
score was associated with greater clinical benefit and prolonged survival in both anti-
PD-L1 and anti-PD-1 cohorts (Fig. 9A and B). The immune phenotypes of patients in
the IMvigor210 cohort has been detected, so we explored the difference of PSI score
among different phenotypes. We found that higher PSI score was remarkably associ-
ated with desert and exclusion immune phenotypes, and checkpoint inhibitors were dif-
ficult to exert antitumor effect in these phenotype (Fig. 9C). And similarly to the results
observed in DLBCL cohorts, 17-gene model exhibited significant prognostic value that
remained independent of the clinical response stratification in immunotherapy cohorts
(Fig. 9D-I).

Finally, we developed an integrated nomogram comprising PSI score and clinico-
pathological features for DLBCL (Figure S12A). Receiver operating characteristic (ROC)
curve analysis confirmed that the combined nomogram offers a robust prognostic
assessment for DLBCL patients, outperforming age, stage, subtypes, and Eastern Coop-
erative Oncology Group (ECOGQG) performance status alone in both the training and
validation cohorts (internal and external). Additionally, the area under the curve (AUC)
values demonstrate that the 17-gene model surpasses the predictive ability of the IPI
(Figures S12B-S12E).

Discussion

Previous studies have shown that TME plays an important role in the pathogenesis of
DLBCL [4], so we focused on the gene expression profile that is closely related to the
three main cell types (cell proliferation, stroma, and immunity) [54] in TME, which can
provide a more personalized risk assessment for DLBCL.

In this study, we developed a unique risk stratification system for DLBCL and assessed
its clinical relevance in disease prognosis and biology. Our 17-gene model exhibited a
robust ability to stratify risk, ensuring stable prognostic stratification of diverse DLBCL
cohorts across international multiple studies using a consistent cutoff value. We defined
HPSI-DLBCL as a spermidine metabolism-cold immune tumor with upregulated SRM
and desert-like immune infiltration, which showed poor prognosis with lower 3- and
5-year OS/PES rates than LPSI-DLBCL. Furthermore, this new model demonstrates
even better performance in prognostic stratification than the traditional classifica-
tion based on the COO [31, 55]. Both LPSI- and HPSI-DLBCL included MHG, GCB,
ABC, and UNC subtypes, but they exhibited varied prognosis within the same subtype,
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indicating that the 17-gene model identify previously undetected biological features.
Moreover, the 17-gene model effectively stratifies patients within high-risk categories,
such as those with MYC rearrangements, double-expressors, and MHG group. Specifi-
cally, our model highlights the necessity for a more nuanced approach to risk assessment
and management, even among patients who are currently categorized as high-risk based
on existing criteria. This has important implications for optimizing therapeutic strate-
gies, as it suggests that not all patients with high-risk features (like MYC rearrangements
or double-expression status) uniformly experience poor outcomes. We recognize the
heterogeneity in high-grade lymphomas, such as DHL/THL. However, when we ana-
lyzed survival outcomes in these patients, our 17-gene model did not demonstrate sta-
tistically significant stratification. This is likely attributable to the small sample size of
DHL/THL cases, with only 36 patients (9 in the HPSI group and 27 in the LPSI group).
This limitation highlights an important area for future research, and further studies
should focus on validating the model’s risk stratification capacity in these specific sub-
groups in well-designed clinical trials.

Previous studies have predominantly focused on immune cells, stromal compo-
nents, or tumor cells individually, without integrating these three crucial factors to
comprehensively evaluate DLBCL treatment response and prognosis, or to develop a
robust prognostic scoring system. The 17-gene based PSI score, which incorporates
tumor proliferation, stromal, and immune characteristics, effectively captures the
heterogeneity of the TME and reflects both intrinsic and extrinsic factors influencing
DLBCL development, progression, and prognosis. This is also why we did not choose
a simpler scoring system; simpler models typically fail to consider all three factors
simultaneously, thereby inadequately capturing the comprehensive influence of both
intrinsic and extrinsic tumor characteristics on disease outcomes. As a result, simpler
models have often failed to provide consistent prognostic risk stratification across
multiple independent cohorts. In contrast, the 17-gene model offers superior stabil-
ity and robustness, enabling reliable prognostic risk stratification across cohorts from
different research centers using the same cutoff value. A reliable cutoff value for risk
stratification is essential for the clinical application of a scoring system. The robust
cutoff value provides a standard for further clinical validation and implementation of
the 17-gene scoring system.

Transcriptional profile largely determines the biological behaviors and molecular sub-
types of DLBCL and can reflect the immune infiltrate pattern of DLBCL. By performing
transcriptional profiling and genomic alteration analyses, we have observed that HPSI-
DLBCL displays characteristics of malignant proliferative phenotype similar to BL and
desert-like immune phenotype. Furthermore, HPSI-DLBCL exhibited a higher frequency
of chromosomal region alterations. The loss and deletion of immunomodulatory genes
on specific chromosome regions might contribute to the cold TME. In contrast, gains or
amplifications of chromosomal regions 11q13.1 and 19q13.1-19q13.2 could potentially
promote tumor progression by influencing specific cancer-related genes. These data sug-
gest the potential role of the 17-gene risk model in immunotherapy. Aligned with our
hypothesis, we found a consistent association in the anti-PD-L1 and anti-PD-1 cohorts,
where tumor patients with elevated PSI scores exhibited a worse prognosis. These
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findings underscore the robust applicability of the 17-gene model, effectively evaluating
the response and prognosis of immune therapy among cancer patients.

As a proto-oncogene, MYC can contribute to multiple cancer hallmarks, such as
self-renewal, proliferation, genomic instability, metabolism as well as immune evasion.
However, despite decades of effort and numerous experiments, MYC has not yet been
successfully targeted therapeutically due to the lack of a binding pocket or specific enzy-
matic activity and the highly disordered protein structure. An important therapeutic
approach for treating tumors with MYC overexpression is to explore the regulation of
crucial molecules upstream or downstream of MYC oncogenic pathway. Insufficient
research has been conducted on the role of SRM in DLBCL, despite its significance as a
vital enzyme in spermidine metabolism and a downstream target of MYC [56, 57]. Our
investigation, leveraging multi-omics data, revealed the potential role of SRM to drive
aggressive proliferation and induce immunosuppressive TME in DLBCL. Importantly,
by identifying HPSI-DLBCL, targeting SRM may improve the immune therapy response
and help resolve the issue of low overall efficacy rate in immune therapy for DLBCL
patients. This offers new hope for patients with refractory or relapsed DLBCL.

Although our study did not directly assess the pathological structure of the TME in
DLBCL, we indirectly reflected the TME composition of DLBCL using 23 gene sets
related to B-cell disorders from the normal and pathological lymphoid biology database,
28 gene sets representing innate and adaptive immune cells, and typical gene enrichment
analysis algorithms. Our findings showed that LPSI-DLBCL was enriched with normal
germinal center (GC) microenvironmental cells—such as macrophages/dendritic cells,
follicular T cells, and stromal cells—while these cells were lacking in HPSI-DLBCL.
Consistent with our findings, Miyawaki et al. employed gene expression profiling and
multispectral fluorescence imaging to demonstrate that the presence of normal GC
microenvironmental cells—such as macrophages/dendritic cells, follicular T cells, and
stromal cells—within lymphoma tissues is indicative of a favorable therapeutic response.
Conversely, DLBCL tissues lacking GC-microenvironmental cells exhibited a higher
frequency of genomic alterations and dysregulated gene expression patterns associated
with poor prognosis [58]. These observations provide additional pathological evidence
supporting our findings.

Finally, we developed a user-friendly tool, which integrates multi-omics datasets, the
17-gene model, and clinicopathological features to generate a comprehensive portrait of
DLBCL for clinical decision support. The tool is accessible in real-time and aims to pro-
vide an intuitive interface to facilitate the analysis and interpretation of complex data.
The tool can be accessed at http://yxszxxsx.com:3838/psidb/ or http://shiny.yxszxxsx.
net:3838/psidb/.

Conclusions

In summary, our study employed a thorough and systematic approach to biomarker dis-
covery and validation. Our results highlight a novel 17-gene PSI signature, which effec-
tively stratifies the risk of DLBCL and reveals that poor prognosis in a subset of patients
is associated with dysregulated spermidine metabolism and a cold TME. Targeting SRM
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could potentially enhance the efficacy of immune therapy and improve the prognosis for
DLBCL patients, thus providing novel insights for immunotherapy strategies. Further
research will focus on the functional interpretation of our results and validation of our
findings in well-designed clinical trials.
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